# THE RAYNAUD-GRUSON FLATTENING THEOREM: OVERVIEW

#### PIOTR ACHINGER

#### Contents

| 1.         | Statement of the flattening theorem       | 1  |
|------------|-------------------------------------------|----|
| 2.         | Corollaries                               | 3  |
| 3.         | Fitting ideals, proof in the case $X = S$ | 6  |
| 4.         | Proof in the projective case              | 8  |
| References |                                           | 10 |

Let A be a commutative ring, B a finitely presented A-algebra, and M a finitely generated B-module. We say that M is A-flat (or flat over A) if it is flat as an A-module. In [RG71], Raynaud and Gruson give a convenient characterization of A-flat modules and to use it to prove their flattening theorem.

In this talk, we shall formulate the theorem and its corollaries, and prove it in some special cases.

#### 1. Statement of the flattening theorem

Let S be a scheme and let  $\mathfrak{I} \subseteq \mathfrak{O}_S$  be a quasi-coherent ideal of finite type. The blowup

$$S' = \mathrm{Bl}_{\mathfrak{I}}(S) := \mathrm{Proj}_{S} \bigoplus_{n \geq 0} \mathfrak{I}^{n} \longrightarrow S$$

of S along  $\mathfrak I$  is the final object in the category of S-schemes  $T \to S$  such that  $\mathfrak I \cdot \mathfrak O_T$  is an invertible ideal (locally generated by a nonzerodivisor). It is projective over S and an isomorphism above  $U = S - V(\mathfrak I)$ . The ideal  $\mathfrak I$ , or the closed subscheme  $V(\mathfrak I)$  determined by it, is called the *center* of the blowup. It not uniquely determined by the morphism  $S' \to S$ , see Warning 1.1 below. Given a scheme S and an open subscheme S and an open subscheme S and an open S isomorphic over S to the blowup in an ideal S with S is called a S-admissible blowup.

By the universal property, if  $X \to S$  is any morphism, the blowup X' of X along  $\mathfrak{I} \cdot \mathfrak{O}_X$  fits into a commutative square

$$X' \longrightarrow S'$$

$$\downarrow \qquad \qquad \downarrow$$

$$X \longrightarrow S.$$

Typically, this diagram is not cartesian unless  $X \to S$  is flat. The induced morphism  $X' \to X_{S'} = X \times_S S'$  is a closed immersion, defined by the ideal of sections of  $\mathcal{O}_{X_{S'}}$  which vanish on the preimage of U, or equivalently those which are  $\mathcal{I}$ -torsion. In

Date: March 2, 2023.

other words, X' is the scheme theoretic closure of  $X_U$  in  $X_{S'}$ . The scheme X' (or the map  $X' \to X_{S'}$ ) is called the *strict transform* of X along  $S' \to S$ .

We can take strict transforms of modules as well. For a quasi-coherent  $\mathcal{O}_X$ -module  $\mathcal{M}$  we define its *strict transform*  $\mathcal{M}'$  to be the quotient of the pull-back of  $\mathcal{M}$  to X' (or, which is the same, to  $X_{S'}$ ) by its  $\mathcal{I}$ -torsion submodule (or the submodule of sections which vanish on the preimage of U).

Warning 1.1 (Blowup does not know its center). The blowup morphism  $S' \to S$  remembers the ideal  $\mathfrak{I}$  only partially. For example, if  $\mathfrak{J}$  is an invertible ideal and  $n \geq 1$ , then  $\mathfrak{I}$  and  $\mathfrak{I}^n \cdot \mathfrak{J}$  define the same blowup. The notion of a strict transform depends on the choice of  $\mathfrak{I}$  and not only on the morphism  $S' \to S$ . For example, if  $S = \operatorname{Spec}(A)$  is affine and  $\mathfrak{I}$  is principal, defined by a nonzerodivisor  $f \in A$ , then (using the above notation) we have X' = S' = S but  $\mathfrak{M}'$  is the quotient of  $\mathfrak{M}$  by the submodule of sections annihilated by a power of f. However, the above descriptions of X' and  $\mathfrak{M}'$  show that they are uniquely determined by  $S' \to S$  together with the open subset U.

The flattening theorem asserts that for a suitable choice of  $\mathfrak{I}$ , the sheaf  $\mathfrak{M}'$  will be flat over S'. More precisely, it says the following.

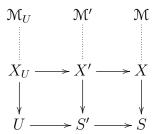
Theorem 1.2 (Flattening theorem, [RG71, 5.2.2]). Let

- S be a quasi-compact and quasi-separated scheme,
- $f: X \to S$  a morphism of finite presentation,
- $\mathcal{M}$  a quasi-coherent  $\mathcal{O}_X$ -module of finite type,
- $U \subseteq S$  a quasi-compact open subset.

Suppose moreover that  $\mathfrak{M}_U = \mathfrak{M}|_{f^{-1}(U)}$  is flat over U and finitely presented over  $\mathfrak{O}_{X_U}$ .

Then, there exists a U-admissible blowup  $S' \to S$  such that the strict transform  $\mathcal{M}'$  is flat over S' and finitely presented over  $\mathcal{O}_{X'}$ , where X' is the strict transform of X.

The following diagram might be helpful in visualizing the theorem.



**Example 1.3** (Curves). Suppose that S is a smooth curve, or more generally a Dedekind scheme (Noetherian and its local rings are discrete valuation rings). Then M is flat over S if and only if it is torsion free over  $\mathcal{O}_S$ . At the same time, every nonzero ideal of  $\mathcal{O}_S$  is invertible, so every nontrivial blowup  $S' \to S$  is an isomorphism. But if U is dense, then  $S' \to S$  is the identity, and the strict transform M' of M is the quotient by its torsion submodule (see Warning 1.1), and hence is flat over S.

In essence, the flattening theorem tries to turn non-flatness into torsion, which then one can get rid of via strict transform. **Example 1.4** (Ideal of a smooth point on a surface). For a less trivial example, let  $S = \mathbf{A}_k^2$ , let X = S, and let  $\mathcal{M}$  be the ideal of the origin P in  $\mathcal{O}_S$ . Then  $\mathcal{M}$  is torsion-free, free on  $U = S \setminus \{P\}$ , but not flat. Let  $S' \to S$  be the blowup at P. The pullback  $\mathcal{M}_{S'}$  can be computed as follows. Introducing coordinates x, y on  $\mathbf{A}_k^2$ ,  $\mathcal{M}$  admits a "Koszul" resolution

$$\mathcal{O}_S \xrightarrow{(y,-x)} \mathcal{O}_S^2 \xrightarrow{(x,y)} \mathcal{M} \longrightarrow 0$$

Then  $\mathcal{M}_{S'}$  has a resolution

$$\mathcal{O}_{S'} \longrightarrow \mathcal{O}_{S'}^2 \longrightarrow \mathcal{M}_{S'} \longrightarrow 0$$

and on the open subset  $V_x \subseteq S'$  where x divides y, say y = tx, we have the relation  $x(te_1 - e_2) = 0$ , i.e.  $te_1 - e_2$  is x-torsion. After dividing by x-torsion (which here coincides with x power torsion),  $\mathcal{M}'_{V_X}$  is freely generated by  $e_2$ . Similarly on the open  $V_y$  where y divides x. Looking at the map  $\mathcal{M}_{S'} \to \mathcal{O}_{S'}$ , pullback of  $\mathcal{M} \hookrightarrow \mathcal{O}_S$ , whose image is the ideal sheaf  $(x, y)\mathcal{O}_{S'}$  of the exceptional divisor E, we see that  $\mathcal{M}' = \mathcal{O}_{S'}(-E)$ .

### 2. Corollaries

Recall that a morphism of schemes  $f: X \to S$  is schematically dominant if the map  $\mathcal{O}_S \to f_*\mathcal{O}_X$  is injective. We introduce the following terminology: let S be a scheme and let  $U \subseteq S$  be an open subset. A U-modification of S is a factorization



of the inclusion  $U \to S$  where  $U \to S'$  is a schematically dominant open immersion and  $S' \to S$  is proper. Equivalently, it is a proper morphism  $S' \to S$  which is an isomorphism over U and such that (the preimage of) U is schematically dense in S'.

The notions of a U-modification and of a U-admissible blowup are closely related but logically independent. On one hand, there exist non-projective U-modifications, and projective U-modifications which are not blowups. More, even a U-modification which is a blowup might not admit a center which is disjoint from U, see Example 2.2 (this is impossible e.g. if S is regular). On the other hand, a U-admissible blowup might not be a U-modification if U is not schematically dense in S.

**Example 2.1** (Line on a quadric cone). Let  $S = \operatorname{Spec}(k[x,y,z]/(xy-z^2))$  be the quadric cone, let U = S - V(x,y,z) be the smooth locus, and let  $L \subseteq S$  be the line through the origin cut out by the ideal (x,z). Then  $L \cap U$  is an effective Cartier divisor on U but L itself is not Cartier. The blowup  $S' \to S$  of S along L is a U-modification, although its center L intersects U, so a priori it might not be a U-admissible blowup. However, the divisor 2L is Cartier, with ideal  $\mathcal{I}_{2L} = x \cdot \mathcal{O}_S$ . Note how  $\mathcal{I}_L^2$  is not equal to  $\mathcal{I}_{2L}$ . Indeed, if this were true, then  $\mathcal{I}_L^2$  would be an invertible ideal, forcing  $\mathcal{I}_L$  to be invertible as well. Instead, we have

$$\mathfrak{I}_{L}^{2} = (x^{2}, xz, z^{2})\mathfrak{O}_{S} = (x^{2}, xz, xy)\mathfrak{O}_{S} = x(x, y, z)\mathfrak{O}_{S} = \mathfrak{I}_{2L} \cdot \mathfrak{I}_{P}$$

where P = V(x, y, z) is the vertex of the cone. Then

$$S' = \mathrm{Bl}_{\mathfrak{I}_{L}}(S) = \mathrm{Bl}_{\mathfrak{I}_{L}^{2}}(S) = \mathrm{Bl}_{\mathfrak{I}_{2L} \cdot \mathfrak{I}_{P}}(S) = \mathrm{Bl}_{\mathfrak{I}_{P}}(S)$$

(see Warning 1.1), so blowing up L has the same as blowing up the vertex P. In particular, S' is smooth. In fact,  $\mathcal{I}_P$  coincides with the first Fitting ideal  $F_1(\mathcal{I}_L)$  of  $\mathcal{I}_L$ , see Example 3.1.

**Example 2.2** (Plane on the cone over a quadric surface). In the previous example, we got lucky in finding a blowup center disjoint from U, essentially because the divisor L was **Q**-Cartier. We will produce an example of a blowup which is a U-modification but not a U-admissible blowup. Consider

$$S = \operatorname{Spec}(k[x, y, z, w]/(xy - zw)),$$

the cone over the quadric surface in  $\mathbf{P}^3$  (isomorphic to  $\mathbf{P}^1 \times \mathbf{P}^1$ ). Let  $H = V(x, z) \simeq \operatorname{Spec}(k[y, w])$  be a plane in S, and let  $S' \to S$  be the blowup along H. Again, on the open set  $U = S - \{P\}$  where P = V(x, y, z, w) is the vertex, the divisor H is Cartier, so  $\pi \colon S' \to S$  is a U-modification. We claim that there does not exist a closed subscheme Z supported at P such that  $S' \simeq \operatorname{Bl}_Z(S)$ . If this were the case, then the preimage of Z in S' would be an effective Cartier divisor with support equal to  $E = \pi^{-1}(P)$ . However, E is not even a divisor on the threefold S'! Let us explicate S' by looking at the open subset  $V_x$  where x divides z, say z = tx:

$$V_x = \operatorname{Spec}\left(\frac{k[x, y, t, w]}{x(y - tw)} / (x \operatorname{-torsion})\right) = \operatorname{Spec}(k[x, t, w]) \simeq \mathbf{A}^3.$$

The preimage of P = V(x, y, z, w) in  $V_X$  is defined by (x, tw, tx, w) = (x, w) and hence is the line  $\operatorname{Spec}(k[t]) \simeq \mathbf{A}^1$  and cannot be the support of a Cartier divisor on  $\mathbf{A}^3$ .

The first corollary asserts that every U-modification is dominated by a U-admissible blowup.

**Corollary 2.3** (Ubiquity of blowups, [RG71, Corollaire 5.7.12]). Let S be a quasi-compact and quasi-separated scheme, let  $U \subseteq S$  be a quasi-compact open subscheme, and let  $S' \to S$  be a U-modification. Then, there exists a U-admissible blowup  $S'' \to S$  such that the composition  $S'' \to S$  is a U-admissible blowup.

*Proof.* We prove this assuming that  $S' \to S$  is finitely presented for simplicity. In fact, using the flattening theorem we can reduce to this case, see [Stacks Project Tag 081R]. We apply Theorem 1.2 to the morphism  $S' \to S$  and the sheaf  $\mathcal{O}_{S'}$ , obtaining a U-admissible blowup  $S'' \to S$  such that the strict transform  $S''' \to S''$  of  $S' \to S$  is flat:

$$S''' \xrightarrow{\text{blowup}} S'$$

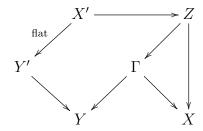
$$flat \downarrow \qquad \qquad \downarrow$$

$$S'' \xrightarrow{\text{blowup}} S.$$

It is enough to show that  $S''' \to S''$  is an isomorphism. But  $S''' \to S''$  is proper, flat, and an isomorphism over U (which can be assumed to be schematically dense in S''), and Lemma 2.8 below implies what we want.

**Corollary 2.4** (Chow's lemma, [RG71, Corollaire 5.7.14]). Let S be a quasi-compact and quasi-separated scheme, let  $X \to S$  be a separated morphism of finite type, and let  $U \subseteq X$  be a quasi-compact open subset which is quasi-projective over S. Then, there exists a U-admissible blowup  $X' \to X$  such that X' is quasi-projective over S.

*Proof.* Fix an open immersion  $U \to Y$  into a projective S-scheme Y, and let  $\Gamma$  be the schematic closure of U in  $X \times_S Y$ . We apply Corollary 2.3 to  $\Gamma \to X$  (which is a projective U-modification), obtaining a U-admissible blowup  $Z \to \Gamma$  such that  $Z \to \Gamma \to X$  is a U-admissible blowup. Next, we apply Theorem 1.2 to the map  $Z \to \Gamma \to Y$ , obtaining a U-admissible blowup  $Y' \to Y$  such that the strict transform  $X' \to X$  of Z in Y' is flat over Y', see the diagram below.



Lemma 2.8 shows that  $X' \to Y'$ , being flat and an isomorphism over U, is an open immersion. Then  $X' \to X$  is a U-admissible blowup and X' is quasi-projective over S, being an open subscheme of the projective S-scheme Y'.

The proof used the following fundamental fact, which we shall use quite a bit, often without mention.

**Lemma 2.5** (Composition of *U*-admissible blowups, [RG71, Lemme 5.1.4]). Let S be a quasi-compact and quasi-separated scheme, let  $U \subseteq S$  be a quasi-compact open subset, and let  $S' \to S$  be a U-admissible blowup. Let  $S'' \to S'$  be a further U-admissible blowup. Then, the composition  $S'' \to S$  is a U-admissible blowup as well.

**Remark 2.6.** The assertions of Corollary 2.3 and 2.4 also hold for algebraic spaces.

The final corollary presented here is less serious but serves as a good illustration.

Corollary 2.7 (Extending a vector bundle). Let S be a quasi-compact and quasi-separated scheme, let  $U \subseteq S$  be a quasi-compact open subset, and let M be a locally free  $\mathcal{O}_U$ -module of finite type. Then, there exists a U-admissible blowup  $S' \to S$  and a locally free  $\mathcal{O}_{S'}$ -module of finite type M' such that  $M'_U \simeq M$ .

Instead of a proof. We do not give the proof (it can be obtained by first extending  $\mathcal{M}$  to a finite type  $\mathcal{O}_S$ -module and then applying the flattening theorem with X = S). Instead, we give an argument which applies in the case when there exists a locally free  $\mathcal{O}_S$ -module of finite type  $\mathcal{V}$  together with a surjection  $\mathcal{V}_U \to \mathcal{M}$  (this should hold at least if S is quasi-projective over an affine scheme). Assume for simplicity that  $\mathcal{M}$  and has constant rank r, then  $\mathcal{M}$  defines a morphism

$$\alpha \colon U \longrightarrow \operatorname{Gr}_r(\mathcal{V})$$

to the Grassmannian of rank r quotients of  $\mathcal{V}$ , such that  $\alpha^*(\mathcal{Q}) = \mathcal{M}$  where  $\mathcal{Q}$  denotes the universal quotient bundle. By projectivity of  $\operatorname{Gr}_r(\mathcal{V}) \to S$  and Corollary 2.3, there exists a U-admissible blowup  $S' \to S$  such that  $\alpha$  extends to a morphism

 $\alpha' \colon S' \to \operatorname{Gr}_r(\mathcal{V})$ , and we can take  $\mathcal{M}' = (\alpha')^*(\mathcal{Q})$ . In fact, the use of the full Corollary 2.3 can be avoided, see Lemma 4.2.

The proofs above relied on the following characterization of open immersions.

**Lemma 2.8** ([Stacks Project Tag 081M]). Let  $f: X \to S$  be a morphism of schemes and  $U \subseteq S$  and open. If

- (1) f is separated, locally of finite type, and flat,
- (2)  $f^{-1}(U) \to U$  is an isomorphism, and
- (3)  $U \rightarrow S$  is quasi-compact and schematically dominant,

then f is an open immersion.

## 3. Fitting ideals, proof in the case X = S

Let A be a ring and let M be a finitely generated A-module. Pick a presentation

$$A^I \xrightarrow{U} A^n \longrightarrow M \longrightarrow 0$$

where I is a possibly infinite index set. Treating U as a  $|I| \times n$  matrix, denote by  $F_r(M)$  the ideal in A generated by the  $(n-r) \times (n-r)$  minors of U (in other words, the entries of  $\wedge^{n-r}(U)$ ). By convention, we set  $F_r(M) = A$  for  $r \geq n$  and  $F_r(M) = 0$  for r < 0, so that  $F_r(M) \subseteq F_{r+1}(M)$  for all r. As the notation already suggests, the ideals  $F_r(M)$  are independent on the choice of a presentation of M. They are called the *Fitting ideals* of M; they are finitely generated if M is finitely presented.

It is clear that the above definition globalizes: for a quasi-coherent sheaf of finite type  $\mathcal{M}$  on a scheme S, we can define the quasi-coherent ideals  $F_r(\mathcal{M}) \subseteq \mathcal{O}_S$ . Their formation commutes with base change  $S' \to S$ . We have  $F_r(\mathcal{M}) = \mathcal{O}_S$  if and only if  $\mathcal{M}$  is *locally* generated by r sections. In other words,

$$\operatorname{Supp}(F_r(\mathcal{M})) = \{ s \in S : \dim_{k(s)}(\mathcal{M} \otimes k(s)) > r \}.$$

In particular,  $\mathcal{M}$  is locally free of rank r if and only if  $F_r(\mathcal{M}) = \mathcal{O}_S$  and  $F_{r-1}(\mathcal{M}) = 0$ .

**Example 3.1** (Line on the quadric cone, revisited). Let  $S = \operatorname{Spec}(A)$ ,  $A = k[x,y,z]/(xy-z^2)$  be the quadric cone as in Example 2.1, and let  $\mathcal{M} = (x,z)\mathcal{O}_S$ , the ideal sheaf of a line through the origin. The generators x and z satisfy the obvious "Koszul" relation  $x \cdot z = z \cdot x$  and one extra relation  $y \cdot x = z \cdot z$ . Consequently, we have a presentation

$$A^{2} \xrightarrow{\begin{bmatrix} -y & z \\ -z & x \end{bmatrix}} A^{2} \xrightarrow{} (x, z)A \xrightarrow{} 0$$

from which we infer that

$$F_0(\mathcal{M}) = (xy - z^2)\mathcal{O}_S = 0$$
,  $F_1(\mathcal{M}) = (x, y, z)\mathcal{O}_S$  and  $F_2(\mathcal{M}) = \mathcal{O}_S$ .

We observe that after blowing up the only nontrivial Fitting ideal  $F_1(\mathcal{M})$ , which is the ideal of the origin P, the strict transform of  $\mathcal{M}$  is an invertible ideal.

**Example 3.2** (Plane on the cone over a quadric surface, revisited). Consider the situation in Example 2.2, i.e.  $S = \text{Spec}(k[x,y,z,w]/(xy-zw)), \ P = V(x,y,z,w),$ 

and H = V(x, z). A calculation entirely similar to the one above shows that the Fitting ideals of  $\mathcal{M} = \mathcal{I}_H$  are equal to

$$F_0(\mathfrak{M}) = (xy - zw)\mathfrak{O}_S = 0$$
,  $F_1(\mathfrak{M}) = (x, y, z, w)\mathfrak{O}_S = \mathfrak{I}_P$  and  $F_2(\mathfrak{M}) = \mathfrak{O}_S$ .

However, as we saw in Example 2.2, this time the blowup  $S'' \to S$  of  $P = V(F_1(\mathfrak{M}))$  in S is not isomorphic to the blowup  $S' \to S$  of H. For the former, the resulting threefold S'' is smooth and isomorphic to the total space of  $\mathfrak{O}(-1,-1)$  on  $\mathbf{P}^1 \times \mathbf{P}^1$  and exceptional divisor (preimage of P in S'') is its zero section, isomorphic to  $\mathbf{P}^1 \times \mathbf{P}^1$ . The map  $S'' \to S'$  is an isomorphism over  $U = S - \{P\}$ , and over P the resulting map is one of the projections  $\mathbf{P}^1 \times \mathbf{P}^1 \to \mathbf{P}^1$ . If  $\tilde{S}' \to S$  is the blowup of the "dual" plane  $\tilde{H} = V(y, w)$ , then on the special fiber of  $S'' \to \tilde{S}'$  we obtain the other projection  $\mathbf{P}^1 \times \mathbf{P}^1 \to \mathbf{P}^1$ . The birational transformation  $S' \leftarrow S \to \tilde{S}'$  is called the "Atiyah flop."

The following simple observation is the key link between Fitting ideals and the flattening theorem.

**Lemma 3.3** ([Ray72, Chapter 4, §3, Lemma 1]). Let S be a scheme and let  $\mathfrak{M}$  be a quasi-coherent  $\mathfrak{O}_S$ -module of finite type. Let  $r \geq 0$  be an integer such that  $\mathfrak{I} = F_r(\mathfrak{M})$  is an invertible ideal and  $\mathfrak{M}$  is locally free of rank r on  $U = S \setminus V(I)$ . Let  $\mathfrak{N} \subseteq \mathfrak{M}$  denote the  $\mathfrak{I}$ -torsion submodule. Then,  $\mathfrak{M}' = \mathfrak{M}/\mathfrak{N}$  is locally free of rank r on S.

*Proof.* The question being local, we may assume that  $S = \operatorname{Spec}(A)$  and  $\mathfrak{I}$  is generated by a nonzerodivisor  $f \in A$ . We may fix a presentation  $A^I \xrightarrow{U} A^n \to M \to 0$  and assume that the determinant  $\det(u_{ij})$  (with  $j \in \{r+1,\ldots,n\}$  and  $i \in I_0 \subseteq I$  where  $|I_0| = n - r$ ) equals f. By Cramer's rule (see Lemma 3.4 below) and the fact that the determinant of every minor of size n - r of U is divisible by f, denoting by  $e_1, \ldots, e_n$  the images of the basis vectors on  $A^n$  in M, we have

$$fe_i = f \sum_{j=1}^r b_{ij} e_j$$
 for every  $i > r$ 

for some  $b_{ij} \in A$ . This implies that the images of  $e_1, \ldots, e_r$  generate  $\mathcal{M}/\mathcal{N}$ , and we have a short exact sequence

$$0 \longrightarrow K \longrightarrow A^r \longrightarrow M/N \longrightarrow 0$$

On the open set U = D(f), the second map  $A^r \to M/N$  induces an isomorphism  $A[1/f]^r \to M[1/f] = (M/N)[1/f]$ , and hence K is annihilated by a power of f. But f is a nonzerodivisor on A and K is a submodule of  $A^r$ , so K = 0, and M/N is locally free of rank r.

**Lemma 3.4** (Cramer's rule). Let A be a ring and let  $U = [u_{ij}]$  be an  $s \times n$  matrix with entries in A, where  $n \geq r$ . Write

$$U = \left\lceil \frac{V}{W} \right\rceil$$

where V is the square matrix consisting of the first s rows of U, and W is the rest. For  $j \leq s < j'$  let  $V_{jj'}$  be the matrix obtained by replacing the j-th row of V with the j'-th row of U (which is the (j'-s)-th row of W). Treating U as a map  $A^s \to A^n$ , and letting  $e_1, \ldots, e_n$  be the standard basis of  $R^n$ , we have for every  $j \leq s$ 

$$\det(V)e_j + \sum_{j'=s+1}^n \det(V_{jj'})e_{j'} \in \operatorname{im}(U).$$

*Proof.* Let  $V' = [v'_{ij}]$  be the adjugate matrix of V, so that  $VV' = \det(V) \cdot \operatorname{Id}$  and  $v'_{ij} = (-1)^{i+j} \det(V'_{ij})$  where  $V'_{ij}$  is obtained from  $V_{ij}$  by deleting the i-th column and j-th row. Expanding  $\det(V_{ij'})$  via its j-th row, we have

$$\det(V_{jj'}) = \sum_{i=1}^{r} (-1)^{i+j} u_{ij'} \det(V'_{ji}) = \sum_{i=1}^{r} v'_{ji} u_{ij'}.$$

On the other hand, applying U to  $V'e_i$   $(j \leq s)$  we obtain

$$UV'e_j = VV'e_j + WV'e_j = \det(V)e_j + \sum_{j'=s+1}^n \left(\sum_{i=1}^r v'_{ji}u_{ij'}\right)e_{j'}$$

where the sum in parentheses equals  $\det(V_{ii'})$  by the previous observation.

Corollary 3.5. The assertion of Theorem 1.2 holds if X = S and S is Noetherian.

Proof. On the open set U, M is flat and of finite presentation, and hence locally free. For every  $r \geq 0$ , let  $U_r \subseteq U$  be the locus where  $M_U$  has rank r, so that U is the disjoint union of a finite number of the sets  $U_r$ . Let  $\overline{U}_r$  be the scheme-theoretic closure of  $U_r$  in S. Blowing up their pairwise intersections (which are disjoint from U) we find a U-admissible blow-up on which the closures of the  $U_r$  are disjoint. Therefore we reduce to the case  $M_U$  locally free of constant rank r.

Let  $S' \to S$  be the blowup along the r-th Fitting ideal  $F_r(\mathcal{M})$ , which is supported in  $S \setminus U$ . Then  $F_r(\mathcal{M}_{S'})$  is invertible. By Lemma 3.3, the strict transform  $\mathcal{M}'$  of  $\mathcal{M}$  is locally free of rank r.

We deduce the following result, which will be used in the subsequent section.

Corollary 3.6 (Extending a line bundle). Let S be a Noetherian scheme, U and open subset of S, and  $\mathcal{L}$  an invertible sheaf on U. Then, there exists a U-admissible blowup  $S' \to S$  and a line bundle  $\mathcal{L}'$  on S' such that  $\mathcal{L}'|_{U} \simeq \mathcal{L}$ .

*Proof.* Let  $\overline{\mathcal{L}}$  be any extension of  $\mathcal{L}$  to a coherent sheaf on S. It exists by [Stacks Project Tag 01PI]. Apply Corollary 3.5 to  $\overline{\mathcal{L}}$ .

### 4. Proof in the projective case

Let  $X \to S$  be a morphism of schemes and let  $\mathfrak{M}$  be a quasi-coherent  $\mathcal{O}_X$ -module of finite type. We define the Quot functor

$$\operatorname{Quot}(\mathfrak{M}/X/S): (\operatorname{Sch}/S)^{\operatorname{op}} \longrightarrow \operatorname{Set}, \quad T \mapsto \{T\text{-flat quotients of } \mathfrak{M}_T\}/\sim.$$

Here, a T-flat quotient of  $\mathcal{M}_T$  is a surjective map  $\mathcal{M}_T \to \mathcal{Q}$  to a quasi-coherent  $\mathcal{O}_{X_T}$ -module  $\mathcal{Q}$ , and two quotients  $\mathcal{M}_T \to \mathcal{Q}_i$  (i=0,1) are equivalent if there exists an isomorphism  $\mathcal{Q}_0 \simeq \mathcal{Q}_1$  under  $\mathcal{M}_T$ .

**Theorem 4.1** (Grothendieck). Suppose that S is Noetherian and X is projective over S. Then,  $Quot(\mathcal{M}/X/S)$  is represented by the disjoint union of countably many projective S-schemes.

**Lemma 4.2** (Corollary 2.3 in projective case). Let S be a quasi-compact and quasi-separated scheme, U a quasi-compact open subscheme of S, and  $S' \to S$  a projective U-modification of S. Then, there exists a U-admissible blow-up  $S'' \to S'$  such that  $S'' \to S$  is a U-admissible blowup as well.

*Proof. Step 1.* Embed S' in  $\mathbf{P}_S^n$  and let

$$(s_0,\ldots,s_n)\colon \mathcal{O}_{S'}^{n+1}\longrightarrow \mathcal{O}_{S'}(1)$$

be the corresponding surjection onto a line bundle  $\mathcal{O}_{S'}(1)$ . Let

$$(s_0,\ldots,s_n)\colon \mathcal{O}_U^{n+1}\longrightarrow \mathcal{L}$$

be its restriction to U. By Corollary 3.6, replacing S with a U-admissible blowup and S' with its strict transform, we may assume that  $\mathcal{L}$  extends to a line bundle  $\overline{\mathcal{L}}$  on S.

Step 2. Again replacing S with a U-admissible blowup, we may assume that S-U is the support of an effective Cartier divisor D (in particular, U is schematically dense in S). Then, replacing  $\overline{\mathcal{L}}$  with  $\overline{\mathcal{L}} \otimes \mathcal{O}_S(rD)$  for large enough r, we may assume that  $s_0, \ldots, s_n$  extend to sections  $\overline{s}_0, \ldots, \overline{s}_n$  of  $\overline{\mathcal{L}}$ .

Step 3. Let Z be the base locus of  $(\overline{s}_0, \ldots, \overline{s}_n)$ , i.e. the support of the cokernel of the map

$$(\overline{s}_0,\ldots,\overline{s}_n)\colon \mathcal{O}_S^{n+1}\longrightarrow \overline{\mathcal{L}}.$$

By construction, we have  $Z \cap U = \emptyset$ . Let  $S'' \to S$  be the blowup of S along Z. Arguing as in [Har77, Example II 7.17.3], we see that we obtain a morphism  $S'' \to \mathbf{P}_S^n$  over S. Since U is schematically dense in S'', the image of this map lands in S'.

Step 4. Finally, let  $S''' \to S'$  be the strict transform of S' along  $S'' \to S$ . The map  $S'' \to S'$  induces a section of  $S''' \to S''$ :

$$S''' \longrightarrow S'$$

$$\downarrow \qquad \qquad \downarrow$$

$$S'' \longrightarrow S.$$

Since U is schematically dense in S'' and S''', we have  $S''' \simeq S''$ , and we conclude that  $S'' \to S'$  is a blowup as well.<sup>1</sup>

Corollary 4.3. The assertion of Theorem 1.2 holds if S is Noetherian and X is projective over S.

Proof. Since  $\mathcal{M}_U$  is flat over U, we obtain an element of  $\operatorname{Quot}(\mathcal{M}/X/S)(U)$ . The image of U in (the scheme representing)  $\operatorname{Quot}(\mathcal{M}/X/S)(U)$  is quasi-compact and hence is contained in an open subscheme  $Q \subseteq \operatorname{Quot}(\mathcal{M}/X/S)$  which is projective over S. Let  $\overline{U}$  be the scheme-theoretic closure of U in Q. Then  $\overline{U} \to S$  is a projective U-modification, and hence (by Corollary 3.6) is dominated by a U-admissible blowup  $S' \to S$ . Let  $\mathcal{M}'$  be the  $\mathcal{O}_{X_{S'}}$ -module which is the quotient of  $\mathcal{M}_{S'}$  corresponding to the map  $S' \to \operatorname{Quot}(\mathcal{M}/X/S)$ . By definition of the Quot scheme,  $\mathcal{M}'$  is flat over S', and by construction its restriction to  $X_U$  equals  $\mathcal{M}_U$ . It follows that  $\mathcal{M}'$  is indeed the strict transform of  $\mathcal{M}$ .

Alternatively, we could check that  $S'' = \mathrm{Bl}_{\mathcal{I}}(S)$  satisfies the universal property of the blowup of S' along  $\mathcal{I} \cdot \mathcal{O}_{S'}$ .

## References

- [Har77] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977, Graduate Texts in Mathematics, No. 52. MR 0463157 (57 #3116)
- [Ray72] Michel Raynaud, Flat modules in algebraic geometry, Compositio Math.  $\bf 24$  (1972), 11–31. MR 302645
- [RG71] Michel Raynaud and Laurent Gruson, Critères de platitude et de projectivité. Techniques de "platification" d'un module, Invent. Math. 13 (1971), 1–89. MR 308104