Fundamental groups in non-Archimedean geometry

CMI Mathematics Seminar

May 18th, 2021

Piotr Achinger, IMPAN (joint with Marcin Lara and Alex Youcis)

I

The de Jong fundamental group

Tate: theory of rigid-analytic spaces over *K*

1 Tate algebra

$$K\langle x_1, \dots, x_r \rangle = \left\{ \sum_{n \in \mathbb{N}^r} a_n \mathbf{x}^n \in K[[x_1, \dots, x_r]] : a_n \to 0 \text{ as } |n| \to \infty \right\}$$

2 Affinoid K-algebras and affinoid spaces

$$X = \operatorname{Sp} A, \qquad A = K\langle x_1, \dots, x_r \rangle / I$$

(underlying set = maximal ideals)

3 Glued together using the admissible topology

Nowadays we typically use adic spaces or Berkovich spaces

Definition (Berkovich '93, de Jong '95)

A morphism $Y \to X$ of rigid K-spaces is called a de Jong covering if there exists an overconvergent open cover $\{U_i\}$ of X such that Y_{U_i} is the disjoint union of finite étale coverings of U_i for all i.

- ▶ rigid *K*-space : adic space locally of finite type over *K*
- overconvergent open: open of X coming from $[X] = X^{Berk}$ (a.k.a. partially proper opens, a.k.a. wide open subsets)

(e.g. $\{x : |f(x)| < 1\}$ is oc but $\{x : |f(x)| \le 1\}$ is often not)

 $\mathbf{Cov}_X^{\mathrm{oc}}$: the category of de Jong covering spaces of X.

Cov_Y^{oc} contains:

- ▶ $F\acute{E}t_X = \{Finite \'etale X spaces\}$
- ▶ UFÉt_X = {Disjoint unions of objects of FÉt_X}
- \blacktriangleright the category of 'topological coverings' of X
- ► André-Lepage's category of tempered coverings

Example (de Jong, J.K. Yu)

The Gross-Hopkins period map

$$\pi_{\mathrm{GH}}: \mathcal{M}_{\mathbf{C}_p}^{\mathrm{LT}} \to \mathbf{P}_{\mathbf{C}_p}^{1,\mathrm{an}}$$

is a de Jong covering.

 $\mathbf{UCov}_X^{\text{oc}}$: the category of disjoint unions of de Jong covering spaces of X.

Theorem (de Jong)

Let X be a connected rigid K-space and \overline{x} a geometric point of X. Then,

$$(\mathbf{UCov}_X^{\mathrm{oc}}, F_{\overline{x}}), \qquad F_{\overline{x}}(Y) = Y_{\overline{x}}$$

is a tame infinite Galois category. In particular, if we set

$$\pi_1^{\mathrm{oc}}(X,\overline{x}) := \mathrm{Aut}(F_{\overline{x}})$$

then one obtains an equivalence of categories

$$F_{\overline{x}}: \mathbf{UCov}_X^{\mathrm{oc}} \xrightarrow{\sim} \pi_1^{\mathrm{oc}}(X, \overline{x}) - \mathbf{Set}$$

 $\pi_1^{\text{oc}}(X, \overline{x})$: the de Jong fundamental group.

Property	de Jong
	covering space
closed under	no
disjoint unions	
closed under	no
compositions	
oc open	yes
local	
admissible	.
local	
étale	555
local	

$$\mathbf{Cov}_{X}^{\tau} = \begin{cases} Y \to X \text{ which } \tau\text{-locally on } X \text{ are the } \\ \text{disjoint union of finite étale coverings} \end{cases}$$

 $\tau \in \{\text{oc}, \text{adm}, \text{\'et}\}$

Question 1 (de Jong)

Are de Jong coverings admissible local on the target? I.e. $\mathbf{Cov}_X^{\text{oc}} = \mathbf{Cov}_X^{\text{adm}}$?

Question 2 (de Jong)

Is the pair ($UCov_X^{adm}$, $F_{\overline{X}}$) a tame infinite Galois category?

Question 3

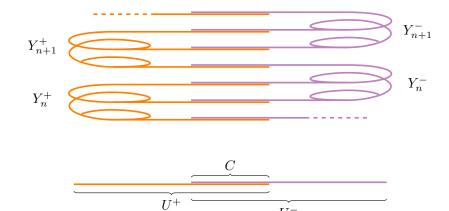
What about étale local on the target? What about ($UCov_X^{\text{\'et}}, F_{\overline{x}}$)?

Theorem

Let K be a non-archimedean field of characteristic p, and let X be an annulus over K. Then, the containment $\mathbf{Cov}_{V}^{\mathrm{oc}} \subseteq \mathbf{Cov}_{V}^{\mathrm{adm}}$ is strict.

- $X = \{ |\varpi| \le |x| \le |\varpi|^{-1} \}$
- $U^{-} = \{ |\varpi| \le |x| \le 1 \}, \qquad U^{+} = \{ 1 \le |x| \le |\varpi|^{-1} \}$
- $C = U^- \cap U^+ = \{|x| = 1\}$

Idea of construction: The covering $Y \to X$ is obtained by gluing two families Y_n^{\pm} of Artin-Schreier coverings of U^{\pm} which are split over shrinking overconvergent neighborhoods of C.



 \dot{U}^-

Question

Do there exist examples in mixed characteristic? We are confident the answer is yes, and one can adapt the example in equicharacteristic p.

Theorem

Let K be a discretely valued non-archimedean field of equicharacteristic 0. Then, for any smooth X one has the equality $\mathbf{Cov}_X^{\mathrm{oc}} = \mathbf{Cov}_X^{\mathrm{adm}} = \mathbf{Cov}_X^{\mathrm{\acute{e}t}}$.

\mathbf{II}

Geometric arcs & geometric coverings

Independence of base point

De Jong's theory hinges on the following result ("existence of étale paths"):

Theorem (de Jong)

Let X be a connected rigid K-space and \overline{x} and \overline{y} geometric points of X. Then, $\pi_1^{\text{oc}}(X; \overline{x}, \overline{y})$ is non-empty.

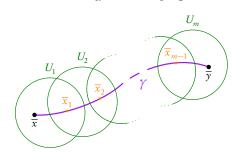
$$\pi_1^{\mathbb{C}}(X; \overline{x}, \overline{y}) = \operatorname{Isom}(F_{\overline{x}}|_{\mathbb{C}}, F_{\overline{y}}|_{\mathbb{C}}), \qquad \mathbb{C} \subseteq \operatorname{\acute{E}t}_X$$

$$\pi_1^{\operatorname{UF\acute{E}t}_X}(X; \overline{x}, \overline{y}) = \pi_1^{\operatorname{alg}}(X; \overline{x}, \overline{y}), \quad \text{algebraic \'etale paths}$$

$$\pi_1^{\operatorname{Cov}_X^{\tau}}(X; \overline{x}, \overline{y}) = \pi_1^{\tau}(X; \overline{x}, \overline{y}) \qquad \tau \in \{\operatorname{oc, adm\'et}\}$$

Independence of base point

 γ arc connecting x and y in [X] $\mathcal{U} = \{U_1, \dots, U_n\}$ " γ -nice" open cover $\overline{x}_i \in \gamma \cap U_i \cap U_{i+1}$ Cov_{\mathcal{U}}: coverings split into finite étale over U_i



$$K_{\mathcal{U}} = \operatorname{im}\left(\underbrace{\pi_{1}^{\operatorname{alg}}(U_{1}; \overline{x}, \overline{x}_{1}) \times \cdots \times \pi_{1}^{\operatorname{alg}}(U_{m}; \overline{x}_{m-1}, \overline{y})}_{\operatorname{compact}} \to \pi_{1}^{\mathcal{U}}(X; \overline{x}, \overline{y})\right)$$

$$\emptyset \neq \lim_{X \to X} K_{\mathcal{U}} \subseteq \lim_{X \to X} \pi_1^{\mathcal{U}}(X; \overline{x}, \overline{y}) = \pi_1^{\text{oc}}(X; \overline{x}, \overline{y})$$

Geometric arc

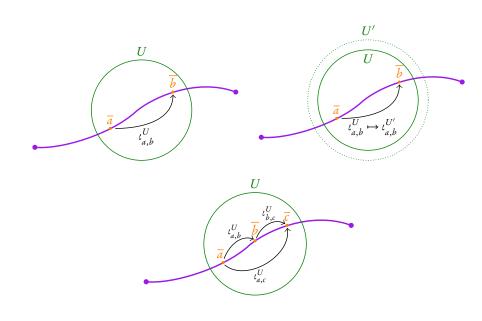
Definition

A geometric arc $\overline{\gamma}$ in X consists of:

- \triangleright an arc γ in [X],
- ▶ for every $z \in \gamma$, a geometric point \overline{z} of X anchored at z^{\max} ,
- ▶ for every subarc $[a, b] \subseteq \gamma$, and every open oc neighborhood U of [a, b] an element $\iota_{a,b}^U \in \pi_1^{\text{alg}}(U; \overline{a}, \overline{b})$,

such that:

- for all $[a, b] \subseteq \gamma$ and open oc neighborhoods $U \subseteq U'$ of [a, b]
 - $\pi_1^{\mathrm{alg}}(U; \overline{a}, \overline{b}) \to \pi_1^{\mathrm{alg}}(U'; \overline{a}, \overline{b}) \quad \text{maps} \quad \iota_{a,b}^U \mapsto \iota_{a,b}^{U'},$
- 2 for every $U \subseteq X$ open oc neighborhood of $[a, c] = [a, b] \cup [b, c]$, $\pi_1^{\text{alg}}(U; \overline{a}, \overline{b}) \times \pi_1^{\text{alg}}(U; \overline{b}, \overline{c}) \to \pi_1^{\text{alg}}(U; \overline{a}, \overline{c})$ maps $(\iota_{a,b}^U, \iota_{b,c}^U) \mapsto \iota_{a,c}^U$.



Geometric path connectedness

Theorem (de Jong, Berkovich, ALY)

Suppose X is connected and let x and y be maximal points of X. Then, there exists an extension L/K, smooth connected affinoid L-curves C_i , and maps $C_i \to X$ such that

- $\bullet \text{ im}(C_i \to X) \cap \text{im}(C_{i+1} \to X) \text{ is non-empty,}$
- 2 $x \in \operatorname{im}(C_1 \to X)$, and $y \in \operatorname{im}(C_m \to X)$

Theorem

Let X be a connected, smooth, and separated rigid K-curve. Then, for any two maximal geometric points \overline{x} and \overline{y} of X there exists a geometric arc $\overline{\gamma}$ that has $\overline{x}, \overline{y}$ as its endpoints.

Morally: connected rigid *K*-spaces are 'geometric path connected'.

Geometric coverings

Definition

A map $Y \to X$ satisfies unique lifting of geometric arcs if for all geometric arcs $\overline{\gamma}$ of X with left geometric endpoint \overline{x} , and every lift \overline{x}' of \overline{x} , there exists a unique lift $\overline{\gamma}'$ of $\overline{\gamma}$ with left geometric endpoint \overline{x}' .

Definition

A morphism $Y \rightarrow X$ of rigid K-spaces is called a geometric covering if it is

- 1 étale,
- 2 partially proper,
- 3 and for all test curves $C \to X$ the map $Y_C \to C$ satisfies unique lifting of geometric arcs.

test curve : a map $C \rightarrow X$ over K where C is a smooth separated rigid L-curve for some extension L/K.

Properties of geometric coverings

 \mathbf{Cov}_X : category of geometric coverings of X

Property	de Jong covering	geometric covering
disjoint unions	no	yes
composition	no	yes
oc open local	yes	yes
admissible local	no	yes
étale local	no	yes

The geometric arc fundamental group

Theorem

Let X be a connected rigid K-space and \overline{x} a geometric point of X. Then, $(\mathbf{Cov}_X, F_{\overline{x}})$ is a tame infinite Galois category. In particular, if we set

$$\pi_1^{\mathrm{ga}}(X,\overline{x}) := \mathrm{Aut}(F_{\overline{x}})$$

then we have an equivalence

$$F_{\overline{x}}: \mathbf{Cov}_X^{\mathrm{oc}} \xrightarrow{\sim} \pi_1^{\mathrm{ga}}(X, \overline{x}) - \mathbf{Set}$$

 $\pi_1^{\text{oc}}(X, \overline{x})$: the geometric arc fundamental group.

Note: The non-emptiness of $\pi_1^{ga}(X; \overline{x}, \overline{y})$ is now the easy part!

Answer to Question 2 and Question 3

Theorem

Let X be a connected rigid K-space and \overline{x} a geometric point of X. Then, for $\tau \in \{\text{adm}, \text{\'et}\}\$ the pair $(\mathbf{UCov}_X^{\tau}, F_{\overline{x}})$ is a tame infinite Galois category. In particular, if we set

$$\pi_1^{\tau}(X,\overline{x}) := \operatorname{Aut}(F_{\overline{x}})$$

then we get an equivalence

$$F_{\overline{x}}: \mathbf{UCov}_X^{\tau} \xrightarrow{\sim} \pi_1^{\tau}(X, \overline{x}) - \mathbf{Set}$$

We get a series of maps of topological groups with dense image

$$\pi^{\mathrm{ga}}(X,\overline{x}) \to \pi_1^{\mathrm{\acute{e}t}}(X,\overline{x}) \to \pi_1^{\mathrm{adm}}(X,\overline{x}) \to \pi_1^{\mathrm{oc}}(X,\overline{x})$$

Ш

Relationship to Bhatt-Scholze's geometric coverings and AVC

Bhatt-Scholze's geometric coverings

Definition (Bhatt-Scholze)

Let X be a locally topologically Noetherian scheme. A morphism $Y \to X$ is a geometric covering if it is étale and partially proper (satisfies the valuative criterion of properness).

 Cov_X : the category of geometric coverings of X.

 $\pi_1^{\operatorname{pro\acute{e}t}}(X,\overline{x})$: the fundamental group of the tame infinite Galois category $(\mathbf{Cov}_X,F_{\overline{x}})$ (Bhatt–Scholze).

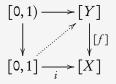
Example

Let \mathbf{D}_K be the closed unit disk, and \mathbf{D}_K° the open unit disk. Then, $\mathbf{D}_K^{\circ} \hookrightarrow \mathbf{D}_K$ is étale and partially proper.

AVC

Definition

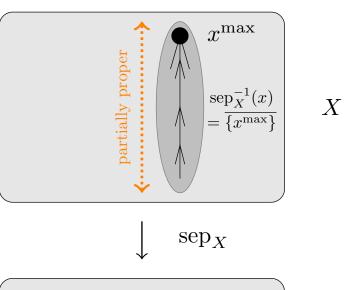
A map $Y \to X$ of rigid K-spaces satisfies the arcwise valuative criterion (AVC) if for every commutative square of solid arrows

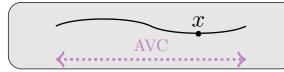


where i is a topological embedding, there exists a unique dotted arrow making the diagram commute.

Example

 $\mathbf{D}_{K}^{\circ} \hookrightarrow \mathbf{D}_{K}$ does not satisfy AVC.





[X]

AVC and geometric coverings

Theorem

Let C be a smooth separated rigid K-curve. Then, for an étale and partially proper map $Y \to C$, the following are equivalent:

- $\mathbf{0}$ $Y \to C$ satisfies unique lifting of geometric arcs,
- 2 $Y \rightarrow C$ satisfies AVC.

Morally: A geometric covering is a map of rigid spaces which:

- 1 is étale,
- 2 satisfies a geometric valuative criterion (partial properness),
- 3 satisfies a topological valuative criterion (AVC).

Specialization map

Another, more literal, connection between geometric coverings in our sense and those of Bhatt-Scholze:

Theorem

Let $\mathfrak X$ be an admissible formal $\mathfrak O_K$ -scheme. Then, for any geometric point $\overline x$ of $\mathfrak X$ there is a specialization map

$$\pi_1^{\text{oc}}(\mathfrak{X}_{\eta}, \overline{x}_{\eta}) \to \pi_1^{\text{proét}}(\mathfrak{X}_s, \overline{x}_s)$$

which has dense image if \mathfrak{X}_s is reduced.

IV

Final thoughts

Further Questions

- ▶ Is there a theory of 'tame arcs' that would allow one to avoid restriction to curves?
- ► Is there a topology τ for which $\mathbf{Cov}_X = \mathbf{Loc}(X_\tau)$?
- ► Can geometric arcs be understood in terms of morphisms of topoi $Sh([0,1]) \rightarrow Sh(X^{Berk})$? (suggested by Scholze)
- Can geometric arcs be used to study other things (e.g. exit paths and constructible sheaves)?

Thanks for listening!