Problem Set 1

due March 13, 2025

Problem 1. Prove that the free group F_n on $n \ge 1$ generators is not isomorphic to the fundamental group of a smooth projective complex variety.

Hint: Reduce to the case *n* odd by passing to a finite index subgroup.

Problem 2. Let Γ be a discrete group. Denote by \mathcal{C}_{Γ} the category of sets endowed with a Γ -action, and by $F : \mathcal{C}_{\Gamma} \to \operatorname{Set}$ the forgetful functor. Prove that Γ is canonically isomorphic to the automorphism group $\operatorname{Aut}(F)$ of the functor F.

Problem 3. A **profinite group** is a topological group which is isomorphic (as a topological group) to the projective limit $\varprojlim G_i$ of an inverse system $(G_i)_{i \in I}$ of finite groups (with the discrete topology). We will learn quite a bit about them later, here are some warm-ups.

- (a) Let Γ be a group and let $H \subseteq \Gamma$ be a subgroup of finite index. Prove that there exists a normal subgroup $N \subseteq \Gamma$ of finite index which is contained in H.
- (b) Prove that a topological group is profinite if and only if it is compact Hausdorff and totally disconnected.
- (c) Let Γ be a group. Prove that there exists an initial homomorphism $\Gamma \to \widehat{\Gamma}$ into a profinite group, called the **profinite completion** of Γ . Identify $\widehat{\Gamma}$ with the inverse limit of Γ/H over all normal finite index subgroup $H \subseteq \Gamma$, and establish a bijection between open (normal) subgroups of $\widehat{\Gamma}$ and finite index (normal) subgroups of Γ .

Problem 4. Let X be a topological space and let G be an abelian group. Construct a bijection between $H^1(X,G)$ and the set of isomorphism classes of G-torsors on X.

Problem 5. Let $\ell_0, \ell_1, \ell_2 \subseteq \mathbb{C}^2$ be three lines in general position (no two are parallel, and they do not all pass through one point), and let

Hint: Find the computation in the literature if you are stuck (you still need to provide a complete proof).

$$X = \mathbb{C}^2 \setminus (\ell_0 \cup \ell_1 \cup \ell_2).$$

Compute the fundamental group of *X*. Is *X* a $K(\pi, 1)$?